i N T

Expanded Memory:
Writing Programs That
Break the 640K Barrier

hen the size of conventional memory was
set at 640K, that seemed like all the memory that
anyone with a PC could ever use. But as pro-
grams written for MS-DOS grew larger, and the
amount of data they could handle increased, what
had once seemed inexhaustible pinched like a pair of size 8 shoes
on size 10 feet. Swapping to disk, or the use of overlays, is a sol-

ution, but it often limits per-
formance to unacceptable levels.

That's why Lotus Develop-
ment Corp., Intel Corp., and
Microsoft Corp. got together
to do something about DOS's
640K memory limit. Together
they came up with the Lotus/In-
tel/Microsoft Expanded Mem-
ory Specification (EMS). The
programming examples accom-
panying this article use the
EMS and will run under the
AST Research Enhanced Ex-
panded Memory Specification
(EEMS), a variation of the
EMS, as well.

Expanded memory is mem-
ory beyond DOS's 640K limit.
Just as DOS manages conven-
tional memory, the Expanded
Memory Manager (EMM) man-
ages expanded memory. The
EMM can manage up to 8
megabytes (MB) of expanded
memory. Programs that adhere
to the EMS can use expanded
memory without fear of
conflict.

Marion Hansen, Bill Krueger, and Nick Stuecklen

nded Memory

Conventional
Memory

Managed
by DOS

Am The Lotus/Intel/Microsoft EMS defines a 64K segment of
memory that resides between 640K and 1MB.

Marion Hansen is a technical writer and editor. She currently writes manuals
for Intel’s Personal Computer Enhancement Operation. Bill Krueger is a
senior software engineer with Intel's Personal Computer Enhancement
Operation and helped develop and implement the Lotus/IntellMicrosoft
Expanded Memory Specification. Nick Stuecklen is a senior software

engineer with a B.S. in computer science.

| MARCH 1987

Figure 2: EMM Functions

ge - -
ells the program the number of L
El located pages and the’total number

umber of expanded

ges requested by the f .
ssigns a unigue EMM handle -
f pages allocated. .

aps the specified logical page in
panded memory to the specmed

Restores the coments of the page
T appung reglsters .

ber of page Jlldeaiod to each one
_ - Savesandrestores the mapping
= context of the active EMM handle.

A EMM functions provide the
tools that application programs need to
use expanded memory.

Contrary to what you may
have heard, you can put code as
well as datainto expanded mem-
ory. Programs can store
anything in expanded memory
except their stacks, which
should reside in conventional
memory. While placing the
stack in expanded memory is
theoretically possible, manag-
ing a paged stack is generally
very difficult.

Expanded memory is imple-
mented in one of two ways.
One way is an expanded mem-
ory board, where expanded
memory physically resides on
an add-in board. Intel's
Above™ Board and AST's
Advantage™ are examples -of

MICROSOFT

SYSTEMS
JOURNAL

expanded memory boards. The
other way is a LIMulator, such
as the Compaq Deskpro 386's
CEMM (Compaq Expanded
Memory Manager), running on
a 386-based system. A LIM-
ulator emulates expanded mem-
ory in extended memory (which
is memory from IMB to
16MB) using the 80386 paging
hardware.

Application programs can't
useexpanded memory automati-
cally. This article explains how
to write programs that take ad-
vantage of expanded memory,
including programming tech-
niques and examples, and the
EMM functions.

Expanded Memory

In the current DOS environ-
ment, code and data can reside
in one of three memory loca-
tions. Each memory type has
advantages and disadvantages.

Conventional Memory:
Conventional memory is al-
ways available, except what-
ever is used by application
programs and resident software,
and it's easily accessible. Mov-
ing about in conventional mem-
ory, whether through code or
data, requires very little over-
head. Segment register updates
(when the software crosses
segment boundaries) are the
only substantial software over-
head. Segment register updates
are common to all three types
of memory and as such are not
a limitation unique to conven-
tional memory. Conventional
memory's drawback is its 640K
limit. Large application pro-
grams, network software, and
resident spelling checkers, to
name just three types of soft-
ware a typical user might have,
consume prodigious amounts
of conventional memory.

Disk Memory: There's
more than enough room on a

MARCH 1987

disk for any software, but the
constant paging in and out of
data and code in even the
simplest applications creates a
great deal of overhead. This
makes disk memory undesir-
able for speed-sensitive appli-
cations.

DOS is not re-entrant, and
you can invoke a terminate-and-
stay-resident (TSR) program in
the middle of a DOS function.
For this reason, TSR programs
sometimes have difficulties
using DOS for disk 1/0.

Expanded Memory: Like
conventional memory, expand-
ed memory is nearly always
available. And with fully popu-
lated expanded memory boards,
it is sufficient for most applica-

tions. Accessing expanded

memory requires slightly more
overhead than accessing con-
ventional memory but signif-
icantly less overhead than
accessing disk memory. When
an application stays within a
single 64K page, expanded
memory overhead is compa-
rable to conventional memory
overhead.

Expanded memory is espe-
cially suitable for four types of
software: TSR programs, graph-
ics packages, databases, and
network software.

TSR programs permanently
consume the memory they oc-
cupy. If a TSR program is
large in code or data, it con-
sumes a great deal of conven-
tional memory. A TSR pro-

» Lil[EER The main
program aliocates one
16K page of expanded
memory, saves the video
RAM area to expanded
memory, clears the
screen and then restores
the screen to expanded
memory.

MARCH 1987

Figure 3: Main Program

\)

Figure 4: Detect_ EMM Subprocedure

detect_emm ()

{
static char EMM device name [DEVICE NAME LEN] = {"EMMXXXX0"};
char *int_ 67_device name ptr;

/* Determine the address of the routine associatéd with INT 67 hex. *f

input_regs.h.ah = GET INT VECTOR; . /% 'DOS function */
input_regs.h.al = EMM INT; /% -BEMM interrupt numbe
intdosx {&input regs, &output regs, &seg:nent_regs),
int_67_device name ptr = -
{segment_regs.es * 65536) *.10; /¥ Create pt

~ field

/* Compare the dévice name with the known EMM des

if {memcmp (EMM devic
{ i
printf ("\x0

A MY The detect_emm subprocedure determines whether the
EMM driver software is installed.

gram that is designed o use 2x-

panded memory effecuvely
keeps most of its code and data
in expanded memory. while
maintaining a small kernel in
conventional ~memory for
housekeeping chores. such as
trapping interrupts, and activat-
ing the rest of the TSR pro-
gram in expanded memory.

Drawing and drafting pack-
ages frequently have to main-
tain multiple copies of their
graphics bit map. Secondarv
drawings, double buffers forani-
mations, and additional menus
are all stored for later retrieval.
Because recall speed is essen-
tial, these bit maps must be
maintained in memory. Just
one monochrome (1 bit per pix-
el) bit map with 640-bv-330
resolution requires nearlv 28K
of storage. Several such bit
map copies can eat up coa-
ventional memory. but thev are
easily accommodated in ex-
panded memory.

Database programs sort huge
volumes of data. wnpical
much more than conventonal
memory are able to handlz. Ex-
panded memory can be used w
store and sort large databases
and is much faster than swap-
ping to disk.

Network software creawes
large tables and volumes of res-
ident data. Although nerwork
software may be used infre-
quently—usually just for pe-
ripheral sharing and il
transfers—it can consume up
to 50 percent of available con-
ventional memory. Putting net-
work software in expanded

] Figure 5

The check_status
subprocedure is called
after each EMM function
to make sure that no
EMM errors have
occurred.

MARCH- 1987

memory frees conventional
memory for software that you
use more frequently.

Using application software
efficiently is a trade-off be-
tween the convenience of gen-
erous amounts of expanded
memory and the overhead of
paging in 64K blocks of it at a
time. You should consider two
questions when deciding wheth-
er to use expanded or conven-
tional memory for your
applications.

First, does the code execute a
large number of far calls or
jumps relative to the time it
spends executing other instruc-
tions? If it does, put the code
in conventional memory. If it
doesn't, put the code in expand-
ed memory.

Second, does the applica-
tion's data require segment reg-
ister initialization each time it
is accessed? If it does, use con-
ventional memory. If it doesn't
use expanded memory.

As a rule of thumb, use
expanded memory if both the
time spent using data or execut-
ing code and the preparation
overhead are large.

The Page Frame

Expanded memory is man-
aged the same way, whether it
resides on an add-in board or is
emulated in extended memory.
The Lotus/Intel/Microsoft EMS
defines a 64K segment of
memory that resides between
640K and IMB. This page
frame is a window into expand-
ed memory (see Figure 1).

Just after the application pro-
gram starts executing, it allo-
cates a certain number of 16K
pages of expanded memory for
its own use. Four pages of ex-
panded memory can be mapped
into the expanded memory page
frame at one time. By mapping
pages in and out of the page
frame, the program can access

© MARCH 1987

Figure 6: Get_Expanded_Memory_Page Subprocedure

any area of the expanded mem-
ory that it allocated.

The EEMS allows the page
frame to reside at any unused
memory address between OK
and 1,024K. Theoretically, this
allows a page frame length of

A The get_expanded_memory_page
subprocedure returns a pointer to the
expanded memory page and a 16-bit tag or
handle associated with that page.

Figure 7: Release_Expanded_Memo

Nigure 7

The release_expanded_memory page
subprocedure releases the expanded
memory pages by de-allocating the
handle associated with those pages.

PracTicaL
CONSIDERATIONS, SUCH AS
DOS AND APPLICATION
PROGRAMS, WHICH USE
CONVENTIONAL MEMORY,
AND THE BIOS AND ROM ON
ADD-IN BOARDS, WHICH USE
MEMORY ABOVE 640K,
RESTRICT THE PAGE FRAME
TO FEWER THAN THE
POSSIBLE 64 PAGES.

_Page Subprocedure

IMB. Practical considerations,
such as DOS and application
programs, which use conven-
tional memory, and the BIOS
and ROM on add-in boards,
which use memory above
640K, restrict the page frame
to fewer than the possible 64
pages. Generally, in a typical
AT system with an EGA, the
maximum number of mappable
pages that DOS doesn't rely on
is six 16K pages.

When the EMM software is
installed, the user selects where
in memory (above 640K) the
page frame resides. The page
frame address is user-selectable,
so that if another device uses
memory at a particular address,
the user can then relocate the
page frame.

Checking for Memory

Before an application pro-
gram can use expanded mem-
ory, it must determine if
expanded memory and the
EMM are present. There are
two methods of determining if
the EMM is present: the open-
handie technique and the get-
interrupt-vector technique.,

Because the EMM is imple-
mented as a device driver, in
the open-handle technique the
program issues an open handle
command (DOS function 3FH)
to determine whether the EMM
device driver is present.

MICROSOFT

SYSTEMS
JOURNAL

In the get-interrupt-vector
technique, the program issues a
get-interrupt-vector command
(DOS function 35H) to get the
contents of interrupt vector ar-
ray entry number 67H. The
pointer thus obtained accesses
information that tells the pro-
gram whether the EMM is in-
stalled. The get-interrupt-vector
technique is easier to <imple-
ment. Most programs can use
either technique, but if a pro-
gram is a device driver or if it
interrupts DOS during file sys-
tem operations, it must use the
get-interrupt-vector technique.

Residents, Transients

Application programs that
use expanded memory can be
classified as either resident or
transient. A transient applica-
tion program is resident only
as long as it executes. When it
is finished running, the mem-
ory it used is available for oth-
er programs. Examples of
resident application programs
include spreadsheets, word pro-
cessors, and compilers.

A resident application pro-
gram remains in memory after
it executes. Resident applica-
tion programs are usually in-
voked by a hardware interrupt,
such as a keystroke, or a soft-
ware interrupt, such as a
RAMdisk. Pop-up desktop pro-
grams, RAMdisk drives, and
print spoolers are examples of
resident application programs.

Resident programs and tran-
sient programs handle expanded
memory differently, Resident
programs may interrupt tran-
sient programs that might be
using expanded memory, so res-
ident programs must save and
restore the state of the page-
mapping registers when they
use expanded memory.

Transient programs don't in-
terrupt other programs, so they

MARCH 1987

A .
[

N Figure o

The pseudo-overlay is
loaded into expanded
memory by the kernel.
The kernel then calls the
initialization procedure
within the pseudo-
overlay. It is the
initilization procedure
within the pseudo-
overlay that returns a
data structure to the
kernel. The data
structure describes the
first object that will be
located in expanded
memory starting at the
page frame segment
address. It contains the
data and extra segments
of the pseudo-overiay,
the number of
subprocedure entry
points in the pseudo-
overiay, and a list of far
pointers to each of the
subprocedures contained
in the pseudo-overlay.
The developer must
establish a convention
for the sequence of the
far pointers and what the
procedures they point to
do. Other information
could be passed in this
structure as well, for
example, number and
types of parameters that
are required by the
subprocedures in the
pseudo-overlay. This
example uses a literal to
determine the maximum
number of far pointers
that may be passed. To
allocate additional space
for a larger number of
entries, simply increase
the value of
max_proc_entries. The
example assumes a
maximum of 64 entries
can be returned.

"~ MARCH 1987

Figure 8: Kernel Module

CONTINUED

Figure 8: Kernel Module

CONTINUED

MICROSOFT

SYSTEMS
JOURNAL

don't need to save and restor2
state. A resident program DyVpi-
cally keeps the ENMM handles
assigned to it and the expanded
memory pages allocated to it
by the EMM until the system
is rebooted. A transient pro-
gram, in contrast, should return
its handle and pages just before
it exits to DOS.

EMM Functions

The EMM functions, summa-
rized in Figure 2, provide the
tools that application programs
need to use expanded memory.
Functions 1 through 7 are gen-
eral-purpose functions. Func-
tions 8 and 9 are for interrupt
service routines, device drivers.
and other memory-resident soft-
ware. Functions 10 and 11 are
reserved. Functions 12 through
14 are for utility programs.
Finally, Function 15 is for
multitasking operating = svs-
tems, although it can be used
for interrupt service routines as
easily as Functions 8 and 9.

To use expanded memory.
programs must perform these
steps in the following order:

1. Check for the presence of
the EMM by using the get-
interrupt-vector or open-handle
techniques.

2. Check whether the
EMM's version number is val-
id (only if the application is
EMM version—specific —
Function 7 (Get EMM Ver-
sion).

3. Determine if enough un-
allocated expanded memory
pages exist for the pro-
gram—Function 3 (Get Unal-
located Page Count).

4. Save the state of expanded
memory hardware (only if it is
a resident program)—Function
8 (Save Page Map) or Function
15 (Get/Set Page Map).

5. Allocate the number of
16K expanded memory pages

MARCH 1987
R

needed by the program—Func-
tion 4 (Allocate Pages).

6. Map the set of expanded
memory pages (up to four) into
the page frame—Function 5
(Map Handle Page).

7. Determine- the expanded
memory page frame base ad-
dress—Function 2 (Get Page
Frame Address).

8. Read/write to the expanded
memory segment within the
page frame, just as you read or
write to conventional memory.

9. Deallocate the expanded
memory pages when the pro-
gram is finished using
them—Function 6 (Deallocate
Pages).

10. Restore the state of ex-
panded memory hardware (only
if it is a memory-resident pro-
gram)—Function 9 (Restore
Page Map) or Function 15
(Get/Set Page Map).

Each EMM function's num-
ber is passed in register AX.
The EMM will return the func-
tion's status in the same
register.

Programs use Int 67 to in-
voke the EMM. This works
like DOS Int 21: preload cer-
tain registers and issue an Int
67. Allrequired registers arerig-
idly specified, and certain con-
ventions exist; for example,
the AX register always returns
status.

Programming

The following two examples
contain programs that have
both code and data in expanded
memory. The first example
(written in Microsoft C, Ver-
sion 3.00) illustrates how ex-
panded memory can be used to
save and restore data. The main
program (see Figure 3) calls a
series of subprocedures that al-
locate one 16K page of expand-
ed memory, save the video
RAM area (the user's screen) to

MARCH 1987

Figure 8: Kernel Module

CONTINUED

Figure 9: Procedure to Test for the Presence of EMM

expanded memory, clear the
screen, and then restore the
screen from expanded memory.
The program assumes the user
has a monochrome display ad-
apter operating in text mode
(nongraphics) and video page
zero is displayed.

The program contains four
subprocedures. Thedetect_emm

A m This procedure tests for the
presence of the EMM in the system. The

carry flag is set if the EMM is present.
The carry flag is clear if the EMM is not
present.

Figure 10: Pseudo-overlay Module

A The kernel loads the pseudo-overlay into expanded
memory.The kernel calls the initialization procedure within the
pseudo-overlay. The initialization procedure returns a data structure
to the kernel. The data structure describes the first object that will
be located in expanded memory starting at the page frame segment
address. It contains the data and extra segments of the pseudo-
overlay, the number of subprocedure entry points in the pseudo-
overlay, and a list of far pointers to each of the subprocedures
contained in the pseudo-overlay.

Figure 11: Procedure to Identify Overlay

A BiFDICRER This procedure merely informs a user that this is the
overlay and cannot be executed from the command line.

Figure 12: Data Segment for the Pseudo-overlay Module

ywierlay_err‘_msg DB
quwers_of_ten DW:

A m This is the data segment for the pseudo-overlay program.

MICROSOFT

SYSTEMS
JOURNAL

subprocedure (see Figure 4) de-
termines whether the EMM
software is installed. If it is in-
stalled, the subprocedure re-
turns to the caller. If the EMM
software isn't installed, the sub-
procedure generates an error
message and exits the program.

The get_expanded_mem-
ory_page subprocedure (see Fig-
ure 6) returns a pointer to the
expanded memory page and a
16-bit tag or handle associated
with that page. The subproce-
dure uses the EMM to allocate
a page of expanded memory. If
an unallocated page exists, the
procedure allocates it and maps
it in and returns the EMM
handle that is associated with
that page.

The check_status subproce-
dure (see Figure 5) is called
after each EMM function to ver-
ify that no EMM errors have
occurred. The release_expand-
ed_memory_pagesubprocedure
(see Figure 7) releases expand-
ed memory pages by deallocat-
ing the handle associated with
those pages.

The second example illus-
trates one program loading an-
other program into expanded
memory, which is especially
applicable for developers of ter-
minate-and-stay-resident (TSR)
applications. Both programs
are written in Microsoft Macro
Assembler, Version 4.0.

The first program, expand-
ed_memory_dispatcher_kernel
(see Figure 8), loads a set of
subprocedures into expanded
memory, from where they can
be invoked at any time. The set
of loaded subprocedures is
called a pseudo-overlay. This
program loads only one pseudo-
overlay and immediately in-
vokes all the subprocedures con-
tained in it. You can easily
load as many pseudo-overlays
as you want by allocating addi-

MARCH 1987

tional pages in expanded mem-
ory, mapping up to four of the
newly allocated pages into the
page frame, and then loading
additional pseudo-overlays.

The program has one subpro-
cedure, test_for EMM (see
Figure 9), which determines
whether the EMM software is
installed and returns the appro-
priate status.

The kernel program loads the
program OVERLAY.EXE (see
Figure 10) into expanded mem-
ory. A pseudo-overlay can't be
larger than 64K because of the
four-page EMM page frame, so
the developer must decompose
the program into separate mod-
ules that contain code or data
no larger than 64K. You can
have up to 8MB of expanded
memory and, therefore, up to
128 overlays.

Although the DOS "load
overlay" function (DOS func-
tion 4BO3H) is used to load the
pseudo-overlays, the code and
any data loaded remain resident
after the load takes place. The
subprocedures contained in the
pseudo-overlay can be accessed
by using the list of pointers re-
turned to the kernel by the
initialization code in the
pseudo-overlay.

The pseudo-overlay program
has five subprocedures. If the
pseudo-overlay program is in-
voked from the command line,
then the command_line en-
try_point subprocedure (see
Figure 11) tells the user that
this is a pseudo-overlay and
thus can't be executed.

The initialization subproce-
dure (see Figure 13) is critical.
The kernel calls this subproce-
dure after the program is
loaded. The initialization sub-
procedure passes back to the
kernel the data segment envir-
onment, a count of the number
of callable subprocedures in the

MARCH 1987

Figure 13: Pseudo-overlay Data Structure Initialization Procedure

A The initialization subprocedure is called by the kernel
after the program is loaded. It passes to the kernel the data segment
environment, a count of the number of callable subprocedures in the
overlay, and a far pointer to each subprocedure.

Figure 14: Procedure to Add AX and D

ARCEICRER This procedure adds AX and DX and displays the result.

Figure 15: Procedure to Subtract AX and DX

Figure 16: Procedure to Display Number in AX in Decimal

Figure 17:
Data and Stack Segment for the Kernel and the Pseudo-overlay

lock struct
ad segment
reloc factor
arm block struct
arm block

SEGMENT PARA STACK 'STACK
local_stack
ENDS

MICROSOFT

SYSTEMS
JOURNAL

overlay, and a far pointer to
each subprocedure.

The sum and diff subproce-
dures are examples of typical
applications. The sum subpro-
cedure (see Figure 14) adds the
numbers in the AX and DX
registers and displays the re-
sult, while the diff subproce-
dure (see Figure 15) subtracts
the numbers in the AX and DX
registers and displays the re-
sult. The display_result proce-
dure (see Figure 16) converts
the result into printable ASCII
form and then displays it.

The pseudo_overlay program
places data into expanded mem-
ory. The data segment for the
pseudo_overlay program is
shown in Figure 12. The com-
mon data area for both pro-
grams is shown in Figure 17.

To Get EMS
If you're interested in develop-
ing application programs that
use expanded memory, call
Intel for a free copy of the
Lotus/Intel/Microsoft Expand-
ed Memory Specification. In
the continental United States,
but outside Oregon, call (800)
538-3373. In Oregon, Alaska,
Hawaii, or outside the United
States (except Canada), call
(503) 629-7354. In Canada,
call (800) 235-0444. For more
information on the AST
EEMS, contact the AST Pro-
duct Information Center at
(714) 863-1480. =

A This proce-
dure subtracts AX and

DX and displays the
result.

A GEEEEE This proce-
dure displays the number
in AX in decimal.

< PEUICRE This is the
common data area for the
kernel and pseudo-
overlay programs.

MARCH 19587

